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1. INTRODUCTION

The heat equation with random initial conditions is a classical subject that
has been extensively studied in both mathematical and physical literature.
An introduction of the rigorous probabilistic tools into the subject can be
traced to Kampe de Feriet (1955) and Rosenblatt (1968) who considered
the heat equation with stationary initial conditions and gave the spectral
representation of stationary solutions in the form of stochastic integrals.

More recently, several researchers investigated solutions of the heat
equation depending on various types of random initial conditions, including
the nonhomogeneous case with random potentials (see, for example, Becus
(1980), Nualart and Zakai (1989), Rotanov et al. (1991), Carmona and
Molchanov (1995), Uboe and Zhang (1995), Holden et al. (1996), Noble
(1997), and the references therein). In particular, Rotanov et al. (1991)
studied the convergence of the statistical solutions of the heat equation
(and more general linear parabolic equations) with weakly dependent

1 Department of Mathematics, National University, Kiev, Ukraine 252601.
2 Department of Statistics, and Center for Stochastic and Chaotic Processes in Science and

Technology, Case Western Reserve University, Cleveland, Ohio 44106.

423

0022-4715/98/0400-0423$15.00/0 © 1998 Plenum Publishing Corporation

KEY WORDS: Heat equation; scaling limit; non-Gaussian ini t ial conditions;
Chebyshev-Hermite expansions; long-range dependence.

Limiting distributions of the parabolically rescaled solutions of the heat equa-
tion with singular non-Gaussian initial data with long-range dependence are
described in terms of their multiple stochastic integral representations.

Received December 31, 1996

Nikolai N. Leonenko1 and Wojbor A. Woyczynski2

Scaling Limits of Solutions of the Heat Equation for
Singular Non-Gaussian Data



424 Leonenko and Woyczynski

initial conditions to the Gaussian limiting process. Carmona and
Molchanov (1995) and Noble (1997) present the asymptotic formulae for
moments of solutions of the heat equation with random potential and
study the intermittency phenomenon.

In the present paper we study the limiting processes of parabolically
rescaled solutions of the heat equation emerging in the case when the initial
condition is a nonlinear transformation of a stationary Gaussian process
with long-range dependence. In a sense, our results are analogous to the
limit theorems for nonlinear functionals of Gaussian processes and fields
with long-range dependence (see, for example, Dobrushin and Major
(1979), Taqqu (1975, 1979), Ivanov and Leonenko (1989), Leonenko and
Olenko (1992) and others), but the type of non-Gaussian limiting processes
obtained in this paper is new.

On the other hand, paradoxically, it was our work on the more com-
plex random initial-value problem for nonlinear diffusion equations (see,
e.g., Bulinski and Molchanov (1991), Albeverio et al. (1994), Funaki et al.
(1995), Hu and Woyczynski (1994), Leonenko and Orsingher (1995),
Molchanov et al. (1995), Surgailis and Woyczynski (1994)) that spurred us
to reexamine the seemingly well studied situation for the classical heat
equation.

2. THE MAIN RESULT

We consider the classical one-dimensional heat equation

subject to the random initial condition

where u = u(t, x). The process n ( x ) = n(x ; w), x e R 1 (defined on a suitable
complete probability space (Q, F, P)) is assumed to be a measurable,
mean-square continuous, wide-sense stationary stochastic process with the
expectation

and the covariance function
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The Bochner-Khinchin Theorem assures that the covariance function R(x)
has the spectral representation

where the spectral measure F is bounded and positive on (R1 , B(R 1 ) ) . In
view of Karhunen's Theorem, there exists a complex-valued orthogonally
scattered random measure Z( - ) such that, for every xeR 1 , process n ( x )
itself has the spectral representation (P-a.s.)

where

and the stochastic integral is viewed as an L2 integral with the control
measure F( •).

The solution u(t, x), t>0, x e R 1 , of the initial-value problem
(2.1)-(2.2) can be written as the usual convolution

of the initial data with the Gaussian kernel. Using the Karhunen's
representation we can immediately see that the solution field u(t, x) is a
stationary process in x with the (P-a.s.) spectral representation (see, Rosen-
blatt (1968), for the case of discrete control measure F)

If n ( x ) , xeR 1 , is a stationary Gaussian process with spectral density
f(L), A e R 1 , then u(t, x), t>0, xeR 1 , is a stationary in x Gaussian field
with covariance structure

If the process n ( x ) , xeR 1 , is subordinate to a Gaussian process (see,
Dobrushin (1979)), then u(t, x), t>0, xeR 1 , can be written as a series of
Wiener-Ito integrals with corresponding transfer functions. These transfer
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functions express the non-Gaussian structure of the field u(t, x), t>0,
xeR1 . In particular, it is possible to calculate the spectral densities of
higher order using the diagram formalism of Dobrushin (1979). These
expansions are also useful in simulations of the random field u(t, x) (see,
for example, Nualart and Zakai (1989) and Holden et al. (1996), for an
exposition of the Wiener-Ito expansions for the heat equation with random
additive potential, and Kwapien and Woyczynski (1992) as a general
source on multiple Wiener-Ito integrals).

A large open area of investigation is to consider the rescaled solutions
of the heat equation with random initial conditions and random potential.
In this paper, we shall restrict ourselves to finding the limiting distributions
of the parabolically rescaled solutions of the initial-value problem (2.1-2.2)
in the case, where the stochastic process n ( x ) , xeR1, is a pointwise trans-
formation of a stationary Gaussian process E(x), xeR1, i.e.,

where the non-random function G: R 1 - > R 1 is such that EG 2 (E(0) ) < oo.
Our result indicates, in particular, that with non-Gaussian initial data with
strong dependence the limiting distribution of the rescaled solutions may
be non-Gaussian.

The underlying stationary process E ( x ) , xeR 1 , is assumed to satisfy
the following two conditions:

Condition A. The process £(x) is a real, measurable, mean-square
continuous stationary Gaussian process with mean E£(x) = 0 and variance
E£ 2 (x )=1 , and correlation function

where L(t), t>0, is a slowly varying function for large values of t and
bounded on each finite interval, i.e., L: (0, oo) ->(0, oo) and, for each X > 0,
lim t ->00[L(At)/L(t)] = 1.

Condition B. The spectral density f(A), X eR1 , of the process £(x)
exists and is a decreasing function of L for L > A0 > 0.

Under conditions A and B, the correlation function B(|x|) has the
spectral representation
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and, in view of the Tauberian theorem (see, Bingham et al. (1987),
Leonenko and Olenko (1991)),

where

The process £(x) itself has the spectral representation

where W( - ) is the complex Gaussian white noise (see, e.g., Major (1981),
Kwapien and Woyczynski (1992)).

The nonlinear function G(u), already assumed to satisfy condition
EG2(£(x)) < oo (see (2.3)), may be expanded in the series

of orthogonal Chebyshev-Hermite polynomials

which form a complete orthogonal basis in the Hibert space
L2(Rl, p(u) du), with

Additionally, we will assume that function G satisfies

Condition C. There exists an integer m>1 such that

The integer m will be called the Hermitian rank of G (see, e.g., Dobrushin
and Major (1979), Taqqu (1979)).
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Our basic description of the scaling limit distribution of the solution
u(t, x) is provided in terms of multiple stochastic integrals (see, for exam-
ple, Kwapien and Woyczynski (1992)).

Theorem 2.1. Let u(t, x), t>0, xeR 1 , be a solution of the initial
value problem (2.1-2) with the random initial data n ( x ) = G(£(x)) satis-
fying the above listed conditions A-C with ae(0, 1 /m) , where m>1 is the
Hermite rank of function G(u). Then, the finite dimensional distributions of
the random field

converge weakly, as T-> oo, to the finite-dimensional distributions of the
random field Zm(t, x), with the following spectral multiple stochastic
integral representation:

where Ck, k = 0, 1, 2,..., are defined by (2.7), the constant c1(a) is defined
by (2.5), and the multiple stochastic integral j' is taken with the respect to
the complex Gaussian white noise W over Rm with diagonal hyperplanes
Li = ± A i , i, j= 1,..., m, i=j , excluded.

For any m>1, and 0<a<1/m, the random field Zm(t, x), xeR1,
t>0, is stationary in x with expectation EZm(t, x) = 0, and correlation
function

A proof of the above result will be provided in the next section.
Observe that the process Z1(t, x), xeR1, t>0, is a Gaussian field which is
stationary in x, with zero mean and the spectral density
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such that

Remark 2.1. The above theorem should be compared with results
of Taqqu (1975, 1979) and Dobrushin and Major (1979), who proved that,
under conditions A, B, and C, the finite dimensional distributions of the
stochastic process

converge weakly to the finite-dimensional distributions of the stochastic process

Process Y1(a) is usually called the fractional Brownian motion, and process
Y2(a)—the Rosenblatt process (see, Rosenblatt (1961), Taqqu (1975)). For
a process with continuous parameter the proof of this result may be
obtained by using an argument from Berman (1979). On the other hand,
using (2.5), it is easy to prove that limT->x E\YT(a)— Ym(a)\2 = 0 and
then apply the Cramer-Wold arguments. Observe, however, that processes
Ym(a) and Zm(1, x)) are different, and in particular Ym(a) is not stationary.

Remark 2.2. The case G(u) = e-u, w e R 1 , was considered by
Bulinskii and Molchanov (1991), and Albeverio et al. (1994); then, the
Hermitian range m = 1.

3. PROOF OF THEOREM 2.1

Let L 2 (O) be the Hilbert space of random variables with finite second
moments. In view of (2.2a) and (2.7), the solution u(t, x) has the Hermite
expansion
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where

Then, from (3.1),

where

and

It is well known (see, for example, Ivanov and Leonenko (1989),
p. 55) that

where dj is the usual Kronecker symbol.
From (3.3), we have

where

The last integral is easier to analyze after the change of variables
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Then

where

Bearing in mind the properties of slowly varying functions (see, for
example, Ivanov and Leonenko (1989), p. 56) we have, for 0<x<1/k ,
k = m, m + 1,..., and T-> oo,

It is easy to see that

so that, from (3.4), we get

Since we assumed that the Condition A is satisfied, for any e > 0 there
exists an U>0 such that B( |y 1 - y2\)<e for \y1 — y2\ > U.

Now, let
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and let us analyze the variance var Cm+1 , T(t, a) by splitting it into two
parts as follows:

It is easy to see that

where K1, H2 > 0 are constants.
So, we have

In view of (3.7) and (3.5) (in the case k = m) the ratio

since e > 0 is arbitrarily small.
From (3.6), (3.8), and Chebyshev's inequality we also get that

It is easy to see that for the remainder term in (3.2)

where K3 > 0 is a constant.
From (3.10), we have

From (3.2), (3.9) and (3.11) we obtain
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where

From (3.5) and (3.12) we have that the limiting distributions, as
T-> oo, of random variables

and random variables

coincide, i.e., if the limiting distribution of one collection of random
variables exists, then so does the limiting distribution of the other, and they
are equal.

We shall prove that, for 0 < a < 1/m,

where Xm->T(t, x), t>0, xeR 1 , is defined by (3.13) and Zm(t, x), t>0,
xeR 1 , is defined by (2.8).

Using Ito's formula (see, e.g., Dobrushin, Major (1979), Major
(1981)), we obtain from (2.6) that

Using the scaling property W ( d ( a L ) ) = d R a W(dL) and the well
known formula

we obtain from (3.13) and (3.15) after transformations: y / R T = y' and
RT Lj = Lj, j= 1,..., m, the following expression
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From (3.16), we obtain

We note that

The function

is absolutely integrable. Using the properties of slowly varying functions
(see, for example, Bingham et al. (1987) or Ivanov and Leonenko (1989),
p. 56) we have, from (3.18-3.19), that

where

Applying (2.7), we have
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The proof that

follows from the trivial inequality

From (3.20) and (3.12) we obtain (3.14). So

as T -> oo. Applying the Cramer-Wold arguments we conclude the state-
ment of the theorem. The formula (2.10) follows from (2.9) and (3.5). |

Remark 3.1. A small modification of arguments of Breuer and
Major (1983), Bulinskii and Molchanov (1991), Surgailis and Woyczynski
(1994), Albeverio et al. (1994), and Leonenko and Deriev (1994) also gives
the following result describing the scaling limit solutions of the heat equa-
tion with weakly dependent (possibly non-Gaussian) initial conditions.

Let £(x) , xeR1, be a stationary Gaussian process with E£(x) = m,
Ex2(x) = 1, and covariance function B(x), xeR1 . Consider the solution
(2.2a) of the heat equation with n ( x ) given by (2.3) where the non-random
function G has the Hermitian rank m > 1 (see condition C). Suppose that

Then, the finite-dimensional distributions of the random fields



Heat Equation for Singular Non-Gaussian Data 437

converge weakly to the finite-dimensional distributions of a stationary in x
Gaussian random field U(t, x), t>0, x e R 1 , with EU(t, x) = 0 and the
covariance function of the form

where

Note that the corresponding spectral density has the form

So, for the correlation function of the form given in Condition A, the only
remaining unsolved case is a= 1.
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